Effects of Fiber Volume on Modal Response of Through-Thickness Angle Interlock Textile Composites

نویسندگان

  • Marco Villa
  • Richard D. Hale
  • Mark Ewing
چکیده

Prior static studies of three-dimensionally woven carbon/epoxy textile composites show that large interlaminar normal and shear strains occur as a result of layer waviness under static compression loading. This study addresses the dynamic response of 3D through-thickness angle interlock textile composites, and how interaction between different layer waviness influences the modal frequencies. The samples have common as-woven textile architecture, but they are cured at varying compaction pressures to achieve varying levels of fiber volume and fiber architecture distortion. Samples produced have varying final cured laminate thickness, which allows observations on the influence of increased fiber volume (generally believed to improve mechanical performance) weighed against the increased fiber distortion (generally believed to decrease mechanical performance). The results obtained from this study show that no added damping was developed in the as-woven identical panels. Furthermore, a linear relation exists between modal frequency and thickness (fiber volume).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Transverse Crack Detection in 3D Angle Interlock Glass Fibre Composites Using Acoustic Emission

In addition to manufacturing cost and production rates, damage resistance has become a major issue for the composites industry. Three-dimensional (3D) woven composites have superior through-thickness properties compared to two-dimensional (2D) laminates, for example, improved impact damage resistance, high interlaminar fracture toughness and reduced notch sensitivity. The performance of 3D wove...

متن کامل

Computation of Strength and Failure of Textile Composites in a Multiscale Simulation

Textile composites describe a broad range of polymer composite materials with textile reinforcements, from woven and non-crimp commodity fabrics to three dimensional textiles. In a general manner textile composites are based on textile preforms manufactured by some textile processing technique and on some resin infiltration and consolidation technique. Due to the complex three-dimensional struc...

متن کامل

Fiber reinforced plastic composites using recycled materials

This work investigates the feasibility of using recycled high density polyethylene (rHDPE), recycled polypropylene (rPP) and old newsprint fiber (ONP) to manufacture fiber reinforced composites. The boards were made through air-forming and hot press. The effects of the fiber loading and coupling agent content on tensile, flexural, internal bond properties and water absorption and thickness swel...

متن کامل

Diagnosis of Delaminated Composites Using Post-processed Strain Measurements under Impact Loading

Potentially having a destructive influence on the mechanical properties of composite laminates, the invisible phenomenon of delamination frequently occurs under impact loading. In the present study, simulating the performance of long-gauge fiber Bragg grating sensors, impact-induced average strains within laminated composites are utilized to develop a delamination identification technique. Firs...

متن کامل

Discrepancies Between Free Vibration of FML and Composite Cylindrical Shells Reinforced by CNTs

In this study, discrepancies between the free vibration of fiber-metal laminate (FML) and composite cylindrical shells reinforced by carbon nanotubes (CNTs) based on Love’s first approximation shell theory have been considered by beam modal function model. The representative volume elements consist of three and four phases for composite and FML structures, respectively, which include fiber, CNT...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014